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`  whoami ` 

Javier Maestro 
<jjmaestro@ieee.org>

2jotas.com

● Infrastructure Software Engineer with 20+ 
years of experience

● Worked at hyperscalers like Facebook and 
Tuenti Technologies with distributed systems, 
real-time data, reliability engineering, disaster 
recovery, and incident management.

mailto:jjmaestro@ieee.org
https://2jotas.com
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`  whoami ` 

Alvaro Hernandez 
<aht@ongres.com>

aht.es

● Founder & CEO, OnGres

● 20+ years Postgres user and DBA

● Mostly doing R&D to create new, innovative 
software on Postgres

● More than 140 tech talks, most about Postgres

● Founder and President of the NPO Fundación 
PostgreSQL

● AWS Data Hero

mailto:aht@ongres.com
https://aht.es
https://ongres.com/
https://postgresql.fund/
https://postgresql.fund/
https://aws.amazon.com/developer/community/heroes/alvaro-hernandez/
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Distributions
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Open source and supply-chain attacks
You use open source software, right?

Yes, for security 
reasons and to prevent 

vendor lock in.
Do you compile it from source?

No, I use binary 
packages.

Who builds those binary packages? How do you 
ensure they provide from the OSS software you 
think and no attacks are injected during the 
process?
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Open source and supply chain attacks

https://nvd.nist.gov/vuln/detail/CVE-2024-3094 

https://nvd.nist.gov/vuln/detail/CVE-2024-3094
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https://reproducible-builds.org
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Reproducible builds
If a binary is built twice* and the resulting binaries are not 
byte-for-byte identical, the build is not reproducible.

* the devil is in the details…
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Reproducible builds
Without reproducible builds:
● You have little guarantee of how the binary was built 

(can’t reproduce).
● You can’t troubleshoot on dev/test environments with 

the very same binary (since they may be different).
● Provisioning is much harder and caching degrades 

(many more binaries).
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Hermetic builds

“When given the same input source code and product 
configuration, a hermetic build system always returns the 

same output by isolating the build from changes to the host 
system”

https://bazel.build/basics/hermeticity

https://bazel.build/basics/hermeticity
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Hermetic builds
Hermetic builds lead to (but don't guarantee):
● Reproducibility
● Protection from environment poisoning
● The ability to create self-contained (or static) packages
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Breaking reproducibility/hermeticity
● System-dependent embeddings in the binary

○ Timestamps
○ RPATH
○ GNU_BUILD_ID
○ strings / debug info with build paths, config flags…
○ code generation (flex and its #line directive)

● Different versions of dependencies and/or tools
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But Debian is reproducible, isn’t it?

“Most packages built in sid today are reproducible…

 under a fixed, predefined, build-path and environment”

https://wiki.debian.org/ReproducibleBuilds 

https://wiki.debian.org/ReproducibleBuilds
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Postgres source code: packaged on a “golden server”

https://wiki.postgresql.org/wiki/Release_process 

https://wiki.postgresql.org/wiki/Release_process
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Monogres
The Postgres monorepo
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Monogres: goal

Create the Postgres monorepo

A centralized repository where
 Postgres and all of its extensions

are indexed, built and packaged
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Monogres: an Open Source, upstream distro

● Monogres will be Open Source with Apache 2.0 License.

● An upstream distribution that other downstream 

distributions can re-use and re-package.

● Both a binary and (potentially) a source distribution
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Monogres: cardinality
● 5 major versions 

● All minor versions of every major

● 5 "option sets" (barebones, minimal, regular, full, debug)

● All extensions (1K+) with multiple versions

● All extensions compiled against major.minor versions 

to avoid potential ABI issues
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Monogres: high cardinality
    4 major-minor per year x (5y + 4y + … + 1y)  x  (
        5 Postgres option sets  (barebones, minimal, regular, full, debug)
        + (1K extensions x ~10 extension versions)
    )  x  2 architectures  (amd64, arm64)
    = 4 x 15 x (5 + 10K) x 2  ≅  1.2M

1M+ packages (and more!)
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{Monogres, Bazel} — Choose two

https://bazel.build

A mature (10y), 
open-source, 
build and testing 
tool created by 
Google and the 
Bazel community

https://bazel.build
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Bazel: remote builds
bazelbuild/remote-apis: remote execution, caching, …

(1) is becoming the de-facto standard 
(2) with industry support
(3) and no vendor lock-in

(1)  Bazel, Buck2, BuildStream, Pants, Please, Buildbox
(2)  Aspect, BuildBuddy, Engflow, NativeLink
(3)  BuildBarn, BuildBuddy, BuildFarm, BuildGrid, NativeLink

https://github.com/bazelbuild/remote-apis
https://bazel.build/remote/rbe
https://buck2.build/docs/users/remote_execution/
https://docs.buildstream.build/master/using_configuring_remote_execution.html
https://www.pantsbuild.org/stable/docs/using-pants/remote-caching-and-execution/remote-execution
https://please.build/remote_builds.html
https://buildgrid.gitlab.io/buildbox/buildbox/about.html
https://www.aspect.build
https://www.buildbuddy.io
https://www.engflow.com
https://github.com/TraceMachina/nativelink
https://github.com/buildbarn
https://github.com/buildbuddy-io/buildbuddy
https://buildfarm.github.io
https://buildgrid.build
https://www.nativelink.com/
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Bazel: extensible, polyglot
● It’s fast, reliable, hermetic, incremental, parallelized and 

extensible

● It has a high-level build language with deterministic 

evaluation and hermetic execution (Starlark)

● Polyglot: supports multiple languages, platforms, and 

architectures (ideal for extensions!)

https://laurent.le-brun.eu/blog/an-overview-of-starlark
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Bazel: hermeticity, sandboxing
● Bazel constructs a work directory for each target

(the execroot/).

● It contains all input files and serves as the container for any 

generated outputs.

● When possible, Bazel uses an OS mechanism to constrain the 

action within the execroot/ (e.g. containers on Linux and 

sandbox-exec on Mac)
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Bazel: community, ecosystem
Third-party extensions that bring awesome functionality 
with little effort:
● toolchains (GCC, LLVM, Zig…)

● rules_pkg: packaging tar, zip, deb, rpm

● rules_oci: building OCI images

● BCR: Bazel Central Registry (discoverability) 

https://github.com/bazelbuild/rules_pkg
https://github.com/bazel-contrib/rules_oci
https://registry.bazel.build/
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Bazel: pain points
● Abstraction comes with developer complexity, especially 

when debugging.

● The hermeticity and reproducibility aspects still lack a simple 

and easy sandbox integration.

● In the end, the easy path is to initially use container images 

which partially defeat the purpose and complicate the 

reproducibility.
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Monogres code tour
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What’s next
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What’s next
● Publish as open source

● Monobot: an automatic crawler that will generate repo.json

● Add more extensions

○ So far we have all contrib and some PGXS extensions

● Support multiple glibc

● Support multiple forks

(Babelfish, IvorySQL, OrioleDB, OpenHalo, PgEdge, …)
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github.com/monogres

https://github.com/monogres

