Reproducible
Postgres

Javier Maestro
() ejjmaestro

Alvaro Hernandez
C) @ahachete

https://github.com/jjmaestro/
https://github.com/ahachete/

* whoami®

e Infrastructure Software Engineer with 20+
years of experience

e \Worked at hyperscalers like Facebook and
Tuenti Technologies with distributed systems,
real-time data, reliability engineering, disaster
recovery, and incident management.

Javier Maestro
<jjmaestro@ieee.org>

2jotas.com

Reproducible Postgres

mailto:jjmaestro@ieee.org
https://2jotas.com

* whoami®

e fFounder & CEQ, OnGres
e 20+ years Postgres user and DBA

e Mostly doing R&D to create new, innovative
software on Postgres

e More than 140 tech talks, most about Postgres

e Founder and President of the NPO Fundacicn ~ ‘Alvaro Hernandez
PostgreSOL <aht@ongres.com>

e AWS Data Hero aht.es

Reproducible Postgres

mailto:aht@ongres.com
https://aht.es
https://ongres.com/
https://postgresql.fund/
https://postgresql.fund/
https://aws.amazon.com/developer/community/heroes/alvaro-hernandez/

Re-thinking
Postgres
Distributions

Reproducible Postgres

Open source and supply-chain attacks

You use open source software, right?

Yes, for security
reasons and to prevent
vendor lock in.

Do you compile it from source?

No, | use binary
packages.

Who builds those binary packages? How do you
ensure they provide from the 0SS software you
think and no attacks are injected during the
process?

Reproducible Postgres

Open source and supply chain attacks

JAXCVE-2024-3094 Detail
MODIFIED

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to

the information provided.

Description

Malicious code was discovered in the upstream tarballs of xz, starting with version 5.6.0. Through a series of complex obfuscations, the
liblzma build process extracts a prebuilt object file from a disguised test file existing in the source code, which is then used to modify specific
functions in the liblzma code. This results in a modified liblzma library that can be used by any software linked against this library,

intercepting and modifying the data interaction with this library.

https://nvd.nist.eov/vuln/detail/CVE-2024-3094

Reproducible Postgres

https://nvd.nist.gov/vuln/detail/CVE-2024-3094

inl Reproducible
“a.¢° Builds

https://reproducible-builds.org

Reproducible builds are a set of software development practices
that create an independently-verifiable path from source to
binary code. (more)

Reproducible Postgres

Reproducible builds
If a binary is built twice™ and the resulting binaries are not

byte-for-byte identical, the build is not reproducible.

*the devil is in the details...

Reproducible Postgres

Reproducible builds

Without reproducible builds:

e You have little guarantee of how the binary was built
(can't reproduce).

e You can't troubleshoot on dev/test environments with
the very same binary (since they may be different).

e Provisioning is much harder and caching degrades
(many more binaries).

Reproducible Postgres

Hermetic builds

“When given the same input source code and product
configuration, a hermetic build system always returns the
same output by isolating the build from changes to the host
system”

https://bazel.build/basics/hermeticity

Reproducible Postgres

https://bazel.build/basics/hermeticity

Hermetic builds

Hermetic builds lead to (but don't guarantee):

e Reproducibility
e Protection from environment poisoning
e The ability to create self-contained (or static) packages

Reproducible Postgres

Breaking reproducibility/hermeticity
e System-dependent embeddings in the binary

Timestamps
RPATH
GNU_BUILD_ID

strings / debug info with build paths, config flags...
code generation (flex and its #1ine directive)

O O O o O

e Different versions of dependencies and/or tools

Reproducible Postgres

But Debian is reproducible, isn't it?

“Most packages built in sid today are reproducible...

under a fixed, predefined, build-path and environment”

https://wiki.debian.org/ReproducibleBuilds

Reproducible Postgres

https://wiki.debian.org/ReproducibleBuilds

Postgres source code: packaged on a “golden server”

Tarball construction

In principle this could be done anywhere, but again there's a concern about
reproducibility, since the results may vary depending on installed bison, flex,
docbook, etc versions. Current practice is to always do this as pgsql on

borka.postgresql.org, so it can only be done by people who have a login there.
In detail:

ssh borka.postgresql.org
sudo -u pgsql -i

mk-release-bundle commit-hash [commit-hash ...]

https://wiki.postgresgl.org/wiki/Release_process

Reproducible Postgres

https://wiki.postgresql.org/wiki/Release_process

Monogres
The Postgres monorepo

Reproducible Postgres

Monogres: goal

Create the Postgres monorepo

A centralized repository where
Postgres and all of its extensions
are indexed, built and packaged

Reproducible Postgres

Monogres: an Open Source, upstream distro

e Monogres will be Open Source with Apache 2.0 License.

e An upstream distribution that other downstream

distributions can re-use and re-package.

e Both a binary and (potentially) a source distribution

Reproducible Postgres

Monogres: cardinality

e 5Smajor versions

e Allminor versions of everymajor

e 5"option sets" (barebones, minimal, regular, full, debug)
e Allextensions (1K+) with multiple versions

e All extensions compiled against major.minor versions

to avoid potential ABl issues

Reproducible Postgres

Monogres: high cardinality

4 major-minor peryear x (Sy + 4y +... +Ty) x (
5 POSth’QS option SetsS (barebones, minimal, regular, full, debug)
+ (1K extensions x ~10 extension versions)

) X 2 architectures (amds4, armss)
=4 x15x(5+10K)x 2 = 1.2M

1M+ packages (and more!)

Reproducible Postgres

{Monogres, Bazel} — Choose two

{ Fast, Correct }
— Choose two

From startup to enterprise, choose the Bazel
open source project to build and test your
multi-language, multi-platform projects.

Install Bazel

Reproducible Postgres

https://bazel.build

A mature (10y),
open-source,
build and testing
tool created by
Google and the
Bazel community

https://bazel.build

Bazel: remote builds

bazelbuild/remote-apis: remote execution, caching, ...
(1) is becoming the de-facto standard
(2) with industry support
(3) and no vendor lock-in

(1) Bazel, Buck?2, BuildStream, Pants, Please, Buildbox
(2) Aspect, BuildBuddy, Engflow, Nativelink
(3) BuildBarn, BuildBuddy, BuildFarm, BuildGrid, Nativelink

Reproducible Postgres

https://github.com/bazelbuild/remote-apis
https://bazel.build/remote/rbe
https://buck2.build/docs/users/remote_execution/
https://docs.buildstream.build/master/using_configuring_remote_execution.html
https://www.pantsbuild.org/stable/docs/using-pants/remote-caching-and-execution/remote-execution
https://please.build/remote_builds.html
https://buildgrid.gitlab.io/buildbox/buildbox/about.html
https://www.aspect.build
https://www.buildbuddy.io
https://www.engflow.com
https://github.com/TraceMachina/nativelink
https://github.com/buildbarn
https://github.com/buildbuddy-io/buildbuddy
https://buildfarm.github.io
https://buildgrid.build
https://www.nativelink.com/

Bazel: extensible, polyglot

e It's fast, reliable, hermetic, incremental, parallelized and
extensible
e [t has a high-level build language with deterministic

evaluation and hermetic execution (Starlark)

e Polyglot: supports multiple languages, platforms, and

architectures (ideal for extensions!)

Reproducible Postgres

https://laurent.le-brun.eu/blog/an-overview-of-starlark

Bazel: hermeticity, sandboxing

e Bazel constructs a work directory for each target
(the execroot/).

e It contains allinput files and serves as the container for any
generated outputs.

e \When possible, Bazel uses an 0S mechanism to constrain the
action within the execroot/ (e.g. containers on Linux and

sandbox-exec on Mac)

Reproducible Postgres

Bazel: community, ecosystem

Third-party extensions that bring awesome functionality
with little effort:

e toolchains (GCC, LLVM, Zig...)

e rules_pkg: packaging tar, zip, deb, rpm

e rules_oci: building OCl images

e BCR: Bazel Central Registry (discoverability)

Reproducible Postgres

https://github.com/bazelbuild/rules_pkg
https://github.com/bazel-contrib/rules_oci
https://registry.bazel.build/

Bazel: pain points

e Abstraction comes with developer complexity, especially
when debugging.

e The hermeticity and reproducibility aspects still lack a simple
and easy sandbox integration.

e Inthe end, the easy path is to initially use container images
which partially defeat the purpose and complicate the

reproducibility.

Reproducible Postgres

Monogres code tour

Reproducible Postgres

load(":cfg.bzl", "CFG")
load(":pg_build.bzl", "pg_build_all")

pg_build_all(
name = CFG.name,
cfg = CFG,

N OO NN N

Reproducible Postgres

21 def _new(name, versions, option_sets, repo_name):

22 ALY

23 Creates a config “struct’ containing build targets for multiple PostgreSQL versions.
24 ek

25 targets = []

26 default_target = None

27

28 for version in versions:

29 for option_set in option_sets:

30 target = _target(name, version, option_set, repo_name)
31

32 if version = DEFAULT_VERSION and option_set = DEFAULT_OPTION_SET:
33 default_target = target

34

35 targets.append(target)

36

37 return struct(

38 name = name,

39 targets = targets,

40 default = default_target,

41)

42

43 CFG = _new(

44 name = "postgres",

45 versions = VERSIONS,

46 option_sets = OPTION_SETS,

47 repo_name = REPO_NAME,

48)

Reproducible Postgres

1 load("@pg_src//:repo.bzl", "DEFAULT_VERSION", "METADATA", "REPO_NAME", "VERSIONS")
2 load(":build_options.bzl", "DEFAULT_OPTION_SET", "OPTION_SETS", "build_options")

3

4 def _target(name, version, option_set, repo_name):

5 non

6 Creates a struct representing a Postgres build target.

7 non

8 if version not in VERSIONS:

9 fail("Postgres version %s is not available in pg_src" % version)
10

11 build_options_metadata = METADATA.get("build_options", {})

12

13 return struct(

14 name = "~"_join((name, version, option_set)),

15 version = version,

16 option_set = option_set,

17 pg_src = "@%s//%s" % (repo_name, version),

18 build_options = build_options(version, option_set, build_options_metadata),
19)

~AA

Reproducible Postgres

151 def pg_build_all(name, cfg):

152 Nar

153 Defines Bazel targets for building all configured PostgreSQL versions.
154

155 This macro instantiates "pg_build™ for every version listed in the Postgres
156 config struct, and creates aliases for the default version.

157 R

158 for target in cfg.targets:

159 pg_build(

160 name = target.name,

161 pg_src = target.pg_src,

162 build_options = target.build_options,

163)

164

Reproducible Postgres

120
121 def pg_build(name, pg_src, build_options):

122 i

123 Generates a Bazel target to build PostgreSQL with the Meson build system.
124

125 This rule configures the environment and invokes the rules_foreign_cc
126 ‘meson’ rule, using preconfigured options, toolchains, etc.
127 GRS

128 options, auto_features = build_options

129

130 meson (

131 name = name,

132 build_data = BUILD_DATA,

133 env = ENV | ENV_MESON,

134 lib_source = pg_src,

135 options = options | MESON_TOOL_OPTIONS,

136 out_binaries = PG_BINARIES,

137 out_data_dirs = OUT_DATA_DIRS,

138 setup_args = [

139 "--auto-features=%s" % auto_features,

140 1,

141 toolchains = TOOLCHAINS,

142 visibility = ["//visibility:public"],

143)

144

145 native.filegroup(

146 name = "{}--logs".format(name),

147 srcs = [name],

148 output_group = "Meson_logs",

149)

Reproducible Postgres

66
67 # postgres/

68 download_archives = use_repo_rule("@repo_utils//download/archives:defs.bz1", "download_archives")
69

70 download_archives(

el name = "pg_src",

72 index = "//postgres:repo.json",

73 patches = {

74 "//postgres/patches:fix-propagate-M4-env-variable-to-flex-subprocess.patch": "x",

75 Fs

76)

77

Reproducible Postgres

"version": 1,
"sources": {
"gh": {
"filename": "{tag}",
"strip_prefix": "postgres-{tag}",
"url": "https://github.com/postgres/postgres/archive/refs/tags/{filename}.tar.gz"

O JO0 Ul DNWN P

}
9 },
10 "versions": {
11 m7.0"y 4
12 "tag": "REL_17_0",
13 "sha256": "9a4b01944f9749e90e28h58e3¢c8556d900h68e3eef02ee509284d5312831787d"
14 Fu
15 "16.0": {
16 "tag": "REL_16_0",
17 "sha256": "f3ffaaScheefd3ab6d426423e1001d01e543841946e5h13d4c8ebcad4a434f2be8”
18 ¥
19 I,
20 "metadata": {
21 "puild_options": {
22 "injection_points": {
23 "compatible": "=17.0"
24 3
25 }
26}
27 Ik

Reproducible Postgres

What's next

Reproducible Postgres

What's next

e Publish as open source
e Monobot: an automatic crawler that will generate repo.json
e Add more extensions
o So far we have all contrib and some PGXS extensions
e Support multiple glibc
e Support multiple forks
(Babelfish, IvorySQL, OrioleDB, OpenHalo, PgEdge, ...)

Reproducible Postgres

github.com/monogres

Reproducible Postgres

https://github.com/monogres

