
Reproducible Postgres

Reproducible
Postgres

@jjmaestro

Álvaro Hernández

Javier Maestro

@ahachete

https://github.com/jjmaestro/
https://github.com/ahachete/

Reproducible Postgres

` whoami `

Javier Maestro
<jjmaestro@ieee.org>

2jotas.com

● Infrastructure Software Engineer with 20+
years of experience

● Worked at hyperscalers like Facebook and
Tuenti Technologies with distributed systems,
real-time data, reliability engineering, disaster
recovery, and incident management.

mailto:jjmaestro@ieee.org
https://2jotas.com

Reproducible Postgres

` whoami `

Alvaro Hernandez
<aht@ongres.com>

aht.es

● Founder & CEO, OnGres

● 20+ years Postgres user and DBA

● Mostly doing R&D to create new, innovative
software on Postgres

● More than 140 tech talks, most about Postgres

● Founder and President of the NPO Fundación
PostgreSQL

● AWS Data Hero

mailto:aht@ongres.com
https://aht.es
https://ongres.com/
https://postgresql.fund/
https://postgresql.fund/
https://aws.amazon.com/developer/community/heroes/alvaro-hernandez/

Reproducible Postgres

Re-thinking
Postgres

Distributions

Reproducible Postgres

Open source and supply-chain attacks
You use open source software, right?

Yes, for security
reasons and to prevent

vendor lock in.
Do you compile it from source?

No, I use binary
packages.

Who builds those binary packages? How do you
ensure they provide from the OSS software you
think and no attacks are injected during the
process?

Reproducible Postgres

Open source and supply chain attacks

https://nvd.nist.gov/vuln/detail/CVE-2024-3094

https://nvd.nist.gov/vuln/detail/CVE-2024-3094

Reproducible Postgres

https://reproducible-builds.org

Reproducible Postgres

Reproducible builds
If a binary is built twice* and the resulting binaries are not
byte-for-byte identical, the build is not reproducible.

* the devil is in the details…

Reproducible Postgres

Reproducible builds
Without reproducible builds:
● You have little guarantee of how the binary was built

(can’t reproduce).
● You can’t troubleshoot on dev/test environments with

the very same binary (since they may be different).
● Provisioning is much harder and caching degrades

(many more binaries).

Reproducible Postgres

Hermetic builds

“When given the same input source code and product
configuration, a hermetic build system always returns the

same output by isolating the build from changes to the host
system”

https://bazel.build/basics/hermeticity

https://bazel.build/basics/hermeticity

Reproducible Postgres

Hermetic builds
Hermetic builds lead to (but don't guarantee):
● Reproducibility
● Protection from environment poisoning
● The ability to create self-contained (or static) packages

Reproducible Postgres

Breaking reproducibility/hermeticity
● System-dependent embeddings in the binary

○ Timestamps
○ RPATH
○ GNU_BUILD_ID
○ strings / debug info with build paths, config flags…
○ code generation (flex and its #line directive)

● Different versions of dependencies and/or tools

Reproducible Postgres

But Debian is reproducible, isn’t it?

“Most packages built in sid today are reproducible…

 under a fixed, predefined, build-path and environment”

https://wiki.debian.org/ReproducibleBuilds

https://wiki.debian.org/ReproducibleBuilds

Reproducible Postgres

Postgres source code: packaged on a “golden server”

https://wiki.postgresql.org/wiki/Release_process

https://wiki.postgresql.org/wiki/Release_process

Reproducible Postgres

Monogres
The Postgres monorepo

Reproducible Postgres

Monogres: goal

Create the Postgres monorepo

A centralized repository where
 Postgres and all of its extensions

are indexed, built and packaged

Reproducible Postgres

Monogres: an Open Source, upstream distro

● Monogres will be Open Source with Apache 2.0 License.

● An upstream distribution that other downstream

distributions can re-use and re-package.

● Both a binary and (potentially) a source distribution

Reproducible Postgres

Monogres: cardinality
● 5 major versions

● All minor versions of every major

● 5 "option sets" (barebones, minimal, regular, full, debug)

● All extensions (1K+) with multiple versions

● All extensions compiled against major.minor versions

to avoid potential ABI issues

Reproducible Postgres

Monogres: high cardinality
 4 major-minor per year x (5y + 4y + … + 1y) x (
 5 Postgres option sets (barebones, minimal, regular, full, debug)
 + (1K extensions x ~10 extension versions)
) x 2 architectures (amd64, arm64)
 = 4 x 15 x (5 + 10K) x 2 ≅ 1.2M

1M+ packages (and more!)

Reproducible Postgres

{Monogres, Bazel} — Choose two

https://bazel.build

A mature (10y),
open-source,
build and testing
tool created by
Google and the
Bazel community

https://bazel.build

Reproducible Postgres

Bazel: remote builds
bazelbuild/remote-apis: remote execution, caching, …

(1) is becoming the de-facto standard
(2) with industry support
(3) and no vendor lock-in

(1) Bazel, Buck2, BuildStream, Pants, Please, Buildbox
(2) Aspect, BuildBuddy, Engflow, NativeLink
(3) BuildBarn, BuildBuddy, BuildFarm, BuildGrid, NativeLink

https://github.com/bazelbuild/remote-apis
https://bazel.build/remote/rbe
https://buck2.build/docs/users/remote_execution/
https://docs.buildstream.build/master/using_configuring_remote_execution.html
https://www.pantsbuild.org/stable/docs/using-pants/remote-caching-and-execution/remote-execution
https://please.build/remote_builds.html
https://buildgrid.gitlab.io/buildbox/buildbox/about.html
https://www.aspect.build
https://www.buildbuddy.io
https://www.engflow.com
https://github.com/TraceMachina/nativelink
https://github.com/buildbarn
https://github.com/buildbuddy-io/buildbuddy
https://buildfarm.github.io
https://buildgrid.build
https://www.nativelink.com/

Reproducible Postgres

Bazel: extensible, polyglot
● It’s fast, reliable, hermetic, incremental, parallelized and

extensible

● It has a high-level build language with deterministic

evaluation and hermetic execution (Starlark)

● Polyglot: supports multiple languages, platforms, and

architectures (ideal for extensions!)

https://laurent.le-brun.eu/blog/an-overview-of-starlark

Reproducible Postgres

Bazel: hermeticity, sandboxing
● Bazel constructs a work directory for each target

(the execroot/).

● It contains all input files and serves as the container for any

generated outputs.

● When possible, Bazel uses an OS mechanism to constrain the

action within the execroot/ (e.g. containers on Linux and

sandbox-exec on Mac)

Reproducible Postgres

Bazel: community, ecosystem
Third-party extensions that bring awesome functionality
with little effort:
● toolchains (GCC, LLVM, Zig…)

● rules_pkg: packaging tar, zip, deb, rpm

● rules_oci: building OCI images

● BCR: Bazel Central Registry (discoverability)

https://github.com/bazelbuild/rules_pkg
https://github.com/bazel-contrib/rules_oci
https://registry.bazel.build/

Reproducible Postgres

Bazel: pain points
● Abstraction comes with developer complexity, especially

when debugging.

● The hermeticity and reproducibility aspects still lack a simple

and easy sandbox integration.

● In the end, the easy path is to initially use container images

which partially defeat the purpose and complicate the

reproducibility.

Reproducible Postgres

Monogres code tour

Reproducible Postgres

Reproducible Postgres

Reproducible Postgres

Reproducible Postgres

Reproducible Postgres

Reproducible Postgres

Reproducible Postgres

Reproducible Postgres

What’s next

Reproducible Postgres

What’s next
● Publish as open source

● Monobot: an automatic crawler that will generate repo.json

● Add more extensions

○ So far we have all contrib and some PGXS extensions

● Support multiple glibc

● Support multiple forks

(Babelfish, IvorySQL, OrioleDB, OpenHalo, PgEdge, …)

Reproducible Postgres

github.com/monogres

https://github.com/monogres

